

Miniature Vibration Isolation System (MVIS)

Program Status

DARPA Technology Interchange Meeting 27 June 2000

Dr. Jack H. Jacobs Sr. Staff Applications Engineer Honeywell Space Systems (602)822-4634 (602)822-3380 fax (888)360-5352 pager jack.h.jacobs@honeywell.com

MVIS Objectives

Objectives:

- Develop a miniature and scaleable active/passive isolation architecture for direct loadpath insertion
- Provide >20dB reduction of vibration transmission from bus to payload over a broad (1-200 Hz) range

Desired Features:

- Multi- point connections with hybrid active/passive isolators.
- Local control at each attachment point, global control from central processor
- Allows 6 dof isolation and suppression in small package for retrofitting
- Re-programmable to meet various mission needs

Applications:

- Application for operation of highprecision optical payloads on nonprecision satellite busses
- Small package, retrofitable, modular and inexpensive jitter reduction system
- Application for quiet submarine decks with proper scaling of internal components
- Applicable to micro-satellite missions as well as payloads for larger satellites

MVIS Team

- Program Manager Tim Hintz
- Application Engineer Jack Jacobs
- Technical Director Torey Davis / Dave Osterberg
- Lead Electrical Rick Self
- Active Stage Design Dan Quenon
- Passive Stage Design Paul Buchele
- Control System Modeling Jim Boyd
- Launch Lock Design Steve Hadden

MVIS Requirements

STRV-2 VISS PERFORMANCE GOALS

MVIS
PERFORMANCE
REQUIREMENTS

MVIS APPLICATION REQUIREMENTS (JITTER / ENVIRON)

Put satellite here.

ISOLATOR
REQUIREMENTS
ACTIVE / PASSIVE

LAUNCH LOCK REQUIREMENTS

CONTROL ELECTRONICS REQUIREMENTS

MVIS Requirements (cont.)

- Based on detailed analysis of:
 - current noise generating components on spacecraft (RWA's, cryocoolers, gimbals, etc.)
 - Space station quiet experiment requirements (active and passive)
 - Jitter specifications from planned missions (NGST, SMV, SIM, SBL, PF, SBIRS-Low)

Paramater	Units	Requirement
Overall Isolation	-	-20 db from 5 to 200 Hz
Isolator Module Weight	lbs	<1.5
Payload Weight	lbs	2-100 (22.5 nominal)
Active Stage Stroke	in	+/- 0.002
Active Stage BW	Hz	0.5 to 100
Passive Stage Break	Hz	8
Passive Stage BW	Hz	5 to 200
Passive Stage Stroke	in	+/-0.008
Passive Damping Coef.	lbf-sec/in	2.64
Sensor Resolution	grms	<0.0003
Active Stage Drivers	-	Local with module
Controller Electronics	-	Local and Global
Packaging Volume	cubic in	<8

MVIS Schedule and Milestones

- OCT 99 Received Authorization to Proceed with the contract
- Nov 99 Completed Fly Sheet specification Identified need for displacement amplifier
- Dec 99 Completed "Best Candidate" isolator concept
- Jan 00 Completed Systems Requirements Review
- Feb 00 Placed Bellows on order

 Received Piezoelectric actuator and accelerometer

 Program placed on hold due to funding constraints
- Mar 00 Program on Hold
- May 00- Received additional funding to complete design and fabrication of a bipod actuator.
- June 00 Expect to receive the bellows order
- Aug 00 Expect to complete bi-pod open loop test.

MVIS Accomplishments

- Completed preliminary design phase
 - Active stage design complete
 - Passive stage design complete
 - Fluid amplifier design complete (7:1)
 - Controller trade study complete
 - Piezo driver design complete/partial build
 - Completed preliminary Matlab simulations
 - SMA launch lock design conceptualized
- Ordered most demonstration parts (awaiting funds for assembly/test)
- Have shown 50:1 improvement in isolator/payload mass ratio from conventional designs
- Have baselined flexible programmable and retrofittable architecture for spacecraft payload applications

MVIS Preliminary Layout

- Hybrid passive/active unit
- 7:1 fluid amplification of piezo stroke
- Integrated accelerometer in each active stage
- Thermaly compensating fluid bellows (no pointing)
- Dumb base unit capable of electronics integration
- 8 Hz Passive break
- Hybrid system control from 0.1 to 200 Hz
- Capable of launch lock integration

F_{BO} (t)

MVIS Isolator Layout (Demo Unit)

MVIS Predicted Performance

Matlab predicted transmissibilities for nom, tiny, and huge payloads, active vs openloop; retuned active and damping

MVIS Lessons Learned

Parameter	MVIS	SUITE	VISS	
Payload Mass	2-100 lbm	13.7 lbm	33 lbm	
Isolation	-20 dB at 5-200 Hz	-20 dB at 5-200 Hz	-20 dB at 5-200 Hz	
Active Stroke	0.003 pk-pk	0.0012 pk-pk	0.080 pk-pk	
Passive Stroke	0.010 pk-pk	0.030 pk-pk (TBR)	0.080 pk-pk	
System Passive	Q<2 for temp	8 <q<10 for="" td="" temp<=""><td>Q<2 for temp</td></q<10>	Q<2 for temp	
Damping	range between –20	range between 10	range between –20	
	and 40°C	and 30°C	and 40°C	
System Power	System Power 8-27 Watts		40-55 Watts	
System Mass	System Mass 3.5 lbm		34 lbm	
		Electronics		
Mass Percentage	>3.5%	>100%	>100%	

Need pictures here.

- MVIS clearly shows some promise for the right applications (Small-medium payloads, small strokes, no steering)
- "Build it (test it ,prove it), and they will come!

MVIS Next Steps

MVIS Next Steps (cont.)

MVIS Applications

- MVIS will fill a need for low cost, small size, low frequency on-orbit vibration isolation of medium to small payloads on future missions where pointing stability, and accuracy are of primary importance.
- Mission examples: (NGST, TPF, SBIRS-Low, SMV, SIM, Discoverer II, Commercial Imaging and Special Programs)
 - Cryo-coolers
 - Focal Plane Arrays
 - RWA's
 - Whole Laser Communications Terminals

Summary

- MVIS shows real promise for NASA and DoD jitter sensitive missions and is retrofittable to most designs
- Most demonstration components have been designed, ordered and delivered
- Remaining funds will allow for open loop single hybrid strut testing
- Anticipated funds will allow for dual strut (single module) closed loop testing
- Fluid amplifier design is very compact and could be applied to other CHAP programs
- Continuing to work with customers for ground/flight demonstration opportunities

BACKUP SLIDES

Actuator Active Stage Options

Summary of piezoelectric possibilities for Demo unit

Vendor and N	Model number	Open tra	loop vel	Max	force	Operating voltage range for max travel	Diame	er	Len	gth	Stiffness		Capacitance	Electrical Interface
		μm	μin	N	lb.	V	mm	in	mm	in	$N/\mu m$	lb/µin	nF	
DynaOptic Motion	CTC-PSt 150V 150/2x3/5	3	118	135	30.3	150	5.1	.2	<mark>5</mark>	.2	45	0.257	70	Red and black leads
Physik	P249.10	5	197	100	22.5	1000V	6.5	.25	<mark>6.5</mark>	.25	20	0.114	6	LEMO connectors and
Physik	P802.00	6	236	1200	270	100	<mark>7</mark>	<mark>.28</mark>	<mark>9</mark>	<mark>.35</mark>	200	1.14	.7	1 m PVC
Kinetic Ceramics Inc.	D0210	10	<mark>394</mark>	700	157	800 V	5.1	.2	<mark>7.7</mark>	.30	70	.40		cables
Piezomecha nik	HPSt 150/20- 15/12	12	472	4800	1080	150 V	22 o.d. 14.5 i.d. tube	.87 .57	13.5	<mark>.53</mark>	400	2.28	<mark>6000</mark>	2 pigtails black & red
Piezomecha nik	HPSt 150/14- 10/12	12	472	2000	449	150 V	15 o.d 9 i.d tube	.59 .35	13.5	<mark>.53</mark>	150	.855	2900	2 pigtails black & red
Xenetics	XIRP0510	5	197	1050	236	150	5	.2	10	.39	135	.77	210	

Vendor and N	Iodel number	Open tra	loop vel	Max	force	Operating voltage range for max travel	Widt	th	Len	gth	Stiff	ness	Capacitance	Electrical Interface
Piezo Systems	T220-A4- 503-QM	μm ± 1325	μin ± .05 inch	N ±.33	lb. ±.074	V ± 90	mm 69.9	in <mark>2.7</mark> 5	mm 31.8	in 1.2 5	N/μm	lb/μin	nF 290	2 leads
ACX	QP15N	± 407	± .016 inch	15	3.37	100	25.4	1.0	50.8	2.0			100	2 leads

Most likely PZT

Controller Assumptions

- Distributed Processor System Baselined.
- Centralized Power Supply.
- On orbit software configurability is still required.
- Each approach satisfies performance requirements.
- System power < 27 watts.
- System weight < 3.5 lbs.

- Control bandwidth of 100 Hz per channel.
- Smart local control actuator required.
- Global controller used for all topology options.
- 12-bit A/D and 8-bit D/A converter resolution is sufficient.
- Radiation Hardened design required.

Controller Trade Study

	Requirement	AIC51	80C196	DSP	MCP (viss)
Sample Frequency/BW (per ch)	1500 Hz/150 Hz (1000, 100)	900/90	8K/800	20K/2K	20K/2K
Channels	>= 2 per vertex, 6 total	1	2	up to 12	up to 8*
Temperature	-55°C to +85°C	-150,85	-55,+125	-55,125	-55,125
		internal			32K x 32
RAM	1Kx8/ channel	128K x 8	1K internal	external	internal
		internal			
PROM	1Kx8/ channel	128K x 8	external	external	8K x 32 internal
Bus width		8	16	32	32
AD Conversion	4 channels/ CUBE	32 internal	external	external	16 internal
Sample Rate	10 ksamp per ch	160 kSPS			10 Ksps
Resolution	12 (TBR)	12			12
Accuracy	±2 bits (TBR)	10			
			3 pwm		
DA Conversion	3 channels	10 internal	channels	external	8 internal
Resolution	8 (TBR)	10	8	10 to 14	12
Accuracy	±0.5 bits (TBR)				
Size (Board Area)	minimize		2.5x3.5 in	5 x 7 in	2 x 4 in
Hybrid Option		1.75 x 2			
MCM option				3 x 4 in	
MCM w ASIC option			2 x 3 in	2.5 x 3 in	
Serial Interface	RS232/Synchronous	4/2	1/4	0/1	0/1
Power (card)	minimize	0.05Watts	1.2W	6-8W	4w
Operating Voltage	3.3 to 5 Vdc	3-5,5	5	3.3-5 ,5	±15, 5,
Radiation Tolerance	100 Krad total dose	5Krad	100Krad	1Mrad	20 Krad

Controller Conclusions

Trade study performed based on:

- Recurring Cost
- Non Recurring Cost
- Radiation tolerance
- Weight
- Power
- Board Area
- Performance Margin
- Expandability
- Reliability (parts count)
- Reliability (fault tolerance)
- Legacy (software & hardware)

Results:

- Based on Best Performance (bang/buck):
 - Best Processor Candidate is to use a single 32-bit DSP card.
 - Used for both local and global digital control.
 - Per unit cost is similar regardless of processor IC.
- Based on Low Cost, High Volume and Minimal Reconfigurability:
 - local analog control and digital global control.
 - Possibility of using a smaller, lower power, less powerful processor depending upon global control requirements.
- For Demonstration Purposes:
 - Local Processor Control Baselined for on-orbit reconfiguration testing.

Piezo Driver Requirements

Parameter	Value	Comments
Supply Voltage Range	150 Vdc	Baseline is single 150Vdc
Usable Output Voltage Range	-75V to +75V minimum	H-Bridge or Dual supply for
(across Piezo)		demo unit
Output Current (peak	16mA	Resonance Frequency
operating @8 Hz)		6 uF capacitance
Peak Output Current	20mA	
Efficiency	>90%	
Load Capacitance	<6.0 μF	Best Candidate is 6uF.
Amplifier Type	Bipolar Drive	
Bandwidth	DC to 1.5 kHz (goal)	0.25 to 200 Hz minimum
Command Input	0 to 10 Vdc	(TBR) Interfaced to
		microcontroller. Could be
		Filtered PWM input @
		>20kHz
Output Power (Typical per	<0.5 watt	(TBR)
channel)		
Output Power (Continuous	2.4 watt	(TBR)
per channel)		
Output Power (Peak per	5 watts	(TBR)
channel)		
Board Size	< 2"x 1.5"	Not critical for demo unit
		but would like to keep as
		small as possible.
Channels	2	Application needs 2 drivers
		per cube.

Launch Lock Trades

- Actuator Candidate selection
 - Electro Mechanical actuators
 - Paraffin actuators
 - Shape Memory actuators
 - Terfenol-D
 - Nitinol

Requirement	System
Reference No.	Requirement
1	One Lock per Station
2	2-100 lb payload
	Capability
3	0 Debris
4	Factor of Safety-Yield
	(Fsy) of 1.0
5	Factor of Safety-
	Ultimate (Fsu) of 1.25
6	Actuation time < 10 min
7	Power < 40 W per Lock
8	Margin of Safety > 0
7	Size < 1" cube
8	0.15 lb per Station
9	Must be able to Re-stow
	payload
10	Stroke of .015"

Launch Lock Best Candidate Design

Isolator Sub-System Design

APPLICABLE SYSTEM LEVEL PERFORMANCE REQUIREMENTS

- PAYLOAD: OPTIMIZED FOR 22.5 LBF PAYLOAD

VERTICAL BOUNCE FREQUENCY: 8 Hz

ACTIVE STROKE: ±.0020 INCH
 PASSIVE STROKE: ±.0080 INCH

- VERTICAL DAMPING COEFFICIENT: 2.64 LBF-SEC/INCH

- OPERATIONAL FREQUENCY RANGE: DC TO 200Hz

ISOLATION: -20dB FROM 5 TO 200Hz

LAUNCH LOADS:
 NOT APPLICABLE - LOADS TAKEN BY LOCK

SYSTEM

– ENVIRONMENT PRESSURE: <1E-6 torr</p>

ENVIRONMENT TEMPERATURE:
 -15C TO +70C OPERATIONAL / -36C TO +70C

SURVIVAL

SENSOR: 100mV/g SENSITIVITY, <.0003grms RESOLUTION

- SIZE: FIT WITHIN 2"X2"X2" CUBE

FLOW DOWN STRUT PERFORMANCE REQUIREMENTS

CONFIGURATION:
 2 STRUTS PER STATION/45° INCLINE/ 3 STATIONS

AXIAL STIFFNESS: 15 LBF/INCH
 ACTIVE STROKE CAPABILITY: >±.0015 INCH
 PASSIVE STROKE CAPABILITY: >±.005 INCH
 PASSIVE DAMPING COEFFICIENT: 0.88 LBF-SEC/IN

Technology Leverage for MVIS

